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 Abstract:  

              An inventory model with ramp type demand rate is developed. The time varying 
deterioration rate is taken into consideration. Three different cases are discussed according to 
the variations of demand rate. The objective of this study is to find the optimal policy for the 
system developed. A numerical assessment is done to illustrate the proposed model and 
sensitivity analysis is also performed to validate the results.  

1. Introduction 

Most of the traditional research articles are developed with the assumption that the goods in 

inventory always conserve their physical attributes which is not true in general. In real life 

situations, many products like; fruits, vegetables, medicines etc. deteriorates over time. Initially, 

Ghare and Schrader (1963) proposed a model with exponentially decaying inventory. This 

model was extended by Covert and Philip (1973) by considering Weibull distributed 

deterioration rate. Later on, Raafat (1991) and Goyal and Giri (2001) provided assessments of 

literature on deteriorating inventory models. For more aspects one can refer to Teng et al. 

(2005), Wee et al. (2009), Yan et al. (2011) and Bakker et al. (2012). 
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Many practical experiences reveal that for fashionable or seasonal products demand increases  

with time, after some time it becomes constant and then it decreases with time. But, most of the 

classical inventory models are developed with constant demand pattern. Donaldson (1977) 

proposed an inventory model with linear trend in demand. Dave and Patel (1981) and Bahari-

Kashani (1989) established inventory models with time proportional demand rate. Hill (1995) 

discussed inventory models for increasing demand followed by level demand. Later, Lin et al. 

(2000) discussed a model with time varying demand and allowing the model for shortages. 

Manna and Chaudhuri (2006), Skouri et al. (2009) provided inventory models with ramp-type 

demand rate. Recently, Singh and Sharma (2013) developed an inventory model with ramp-type 

demand pattern and two-level trade-credit financing.     

 2. Notation and Assumptions 

The following notations and assumptions are used in developing the model: 

Notations 

           T  The constant scheduling period (cycle) 

           t1  The time when the inventory level reaches zero 

           S The maximum inventory level at each scheduling period 
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           c1 The inventory holding cost per unit per unit time 

           c2 The cost incurred from the deterioration of one unit 

            µ The time point that increasing demand becomes steady 

   γ The time point, after µ, until the demand is steady and then decreases    I(t) The inventory 

level at time t � [0, T]. 

Assumptions : 

(1) The ordering quantity brings the inventory level up to the order level S. Replenishment 

rate is infinite. 

(2) The deterioration of the item is distributed as Weibull (a, b); and is given 

by 1( ) ( 0, 0, 0).bt abt a b tθ −= > > >  There is no replacement or repair of deteriorated units during 

the period T. For b = 1, θ(t) becomes constant. 

(3) The demand rate � ( � ) is a time dependent ramp-type function and is of the following 

form: 
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where � ( � ) is a positive, continuous, and increasing function of �, and � (�) is a positive, 

continuous and decreasing function of �. 

3. The Mathematical Formulation of the Model  

The replenishment at the beginning of the cycle brings the inventory level up to �. During the 

period (0, �1) inventory level decreases due to demand and deterioration and falls to zero at �=�1. 

Consequently, the inventory level, � (�), during the time interval 0≤�≤t1, satisfies the following 

differential equation: 

 ( ) ( ) ( ) ( ) ( ) ,0,0, 11 =≤≤−=+ tItttDtIt
dt

tdI θ  (1) 

The solution of this differential equation is affected from the relation 

between �1, �, and 	 through the demand rate function. Since the demand has three components 

in three successive time periods, the following cases: (i)�1<�<	<
, (ii) �<�1<	<
, and 

(iii) µ< γ<t1<T must be considered to determine the total cost and then the optimal 

replenishment policy. 

Case (t1< µ < γ< T). In this case, (1) becomes 

 ( ) ( ) ( ) ( ) .0,0, 11
1 =≤≤+−=+ − tIttbtatIabt

dt

tdI b  (2) 

The solution of (2), is 
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 10 tt ≤≤  

The total amount of deteriorated items during [0, t1] is 

 ( ) ( )1
00 tD I a bt dt= − ∫ +  
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The cumulative inventory carried in the interval [0, t1] is 
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The total cost is the sum of holding and deterioration costs and is given by 

( )1 1 1 1 2TC t c I c D= +  (6) 

Case 2 (µ<t1<γ<T). In this case, (1) reduces to the following two: 

( ) ( ) ( ) ( ) ( )+−− =≤≤+−=+ µµµ IItbtatIabt
dt

tdI b ,0,1                        (7) 
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( ) ( ) ( ) ( ) 0,0, 11
1 =≤≤+−=+ − tIttbatIabt

dt

tdI b µ                   (8) 

Their solutions are, respectively, 
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The total amount of deteriorated items during  
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The total inventory carried during the interval  

( ) ( ) ( )dttIdttIdttII tt 11
001 µ
µ ∫+∫=∫=  
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The inventory cost for this case is 

TC2(t1)=c1I1+c2D           (13) 

Case 3(µ<γ<t1<T). In this case, (3.1) reduces to the following three: 

( ) ( ) ( ) ( ) ( ),,0,1 +−− =≤≤+−=+ µµµ IItbtatIabt
dt

tdI b    (14)   

( ) ( ) ( ) ( ) ( ),,,1 +−− =≤≤+−=+ γγγµµ IItbatIabt
dt

tdI b  (15) 

( ) ( ) ( ) ( ) .0,, 11
1 =≤≤−−=+ − tIttbtatIabt

dt

tdI b γ  (16) 
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Their solutions are, respectively, 
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The total amount of deteriorated items during [0,t1] is 
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The total inventory carried during the interval [0,t1], using (17), (18) and (19) is given by 
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The inventory cost for this case is 

( )3 1 1 1 2TC t c I c D= +  (22) 

Finally the total cost function of the system takes the following form: 
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Now, our objective is to minimize the total cost (TC ( t1))  of the system. The optimal total cost 

(TC ( t1)) is  ( ) ( ) ( ){ }1 1 2 1 3 1min , ,TC t TC t TC t  . 

 

 

 

4.   Numerical Example 

The example, which follow, illustrate the results obtained. 

Example:  The input parameters are c1 = $4 per unit per year, c2 = $4.5 per unit, µ = 0.11 year, γ 

= 0.85, a = 20, b = 2, T = 1 year, Again t1
* = 0.8 the optimal ordering quantity is Q* = 35.59 and 

the minimum cost is TC(t1
*) = 2312.805. The convexity of the total cost is shown graphically in 

Fig. 1 
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Fig. 1: Convexity of the total cost TC w.r.t. t1. 

 

 

 

 

 

 

 

Table 1 : Sensitivity analysis. 
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Parameter % Change t1
* Q* TC(t1

*) 

 

c1 

 -50 

 -20 

+20 

+50 

0.844 

0.823 

0.783 

0.764 

35.52 

35.51 

35.44 

35.38 

2267.686 

2294.868 

2344.073 

2364.638 

 

c2 

 -50 

 -20 

+20 

+50 

0.800 

0.800 

0.800 

0.800 

35.59 

35.59 

35.59 

35.59 

2311.758 

2312.015 

2313.270 

2313.985 

 

 

Concluding Remarks 

In this paper, an inventory model for decaying items has been studied. It is assumed that the 

demand rate is time dependent and a ramp type pattern of three branches has been used. The 

model is more realistic as Weibull distributed deterioration rate is taken into account. The whole 

concept of this model is illustrated with a numerical example and sensitivity analysis is also 

performed. 
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